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1 The PE Equation

Kadlu uses a Parabolic Equation (PE) approch for solving the wave equation
(Jensen, Ch. 6). This yields solutions that are valid in the farfield (distance
from source considerable greater than wavelength) for environments that exhibit
“weak” range dependence. More specifically, Kadlu implements a numerical
solution to the PE equation introduced by Thomson and Chapman,
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which is said to have “good wide-angled behavior for realistic ocean acoustic
environments with moderate changes in the refraction index”, n = ¢p/c. Rear-

ranging and introducing A = iko(n—1) and B = ikg[—14 (1 —|—k0_2687;2)1/2], this
can be written in the compact form,
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2 Split-Step Fourier Solution
Following Jensen Eq. (6.123), we approximate the solution with,
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Finally, using F to denote the fourier transform z — k. and using the cor-
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respondence 25 — —k? (Jensen Eq. (6.87)), we obtain the split-step Fourier

formula,

F(r+ Ar,z) = UD(%AT) F Ur(Ar) Fi UD(%A’I“) Fip(r, z) , (4)
where Up and Uy are the diffractive and refractive propagation matrices, re-
spectively,
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3 Computational domain

Following Jensen Sec. 6.5.3, we implement the split-step Fourier algorithm on a
uniform grid (Ar, Az). Following Jensen, we adopt a default grid size of,

Az=X/2, Ar=2Az, A=cy/f=2r/ko, (6)

where ¢g = 1,500 m/s is the reference sound speed in water. (The option is
provided for the user to specify a finer/coarser grid as needed.) The water
surface (z = 0) is treated as a pressure-release surface, requiring ¥(r,0) =
0. At the bottom, we terminate the physical solution domain by an artificial
absorption layer of uniform thickness and a complex index of refraction of the

form,
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where we adopt o = 1/(mlogyg€) ~ 0.733, D = (zmax — H)/3, and zmax = 3 H.
We determine the depth at which the physical domain is terminated, H, from
the requirement that the real bottom should have a thickness of at least several

wavelengths. Thus, we take,
H = max z, + 3\, (8)

where max z; is the maximum seafloor depth in the domain.
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Figure 1: Shematic of PE solution domain (adapted from Jensen).



4 Water-Bottom Interface

For realistic treatment of bottom effects on sound propagation, it is important to
include density changes at the water-bottom interface. We follow the approach
described in Jensen Sec. 6.5.4. The refractive index, n, is replaced with the
effective index of refraction,
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and the displacement potential ¢ in Egs. (1)—(4) is replaced with 7:/; =Y/\/p.
We remove density discontinuities at the water-bottom interface by introducing
a smoothing function of the form,

p(z) = p+ 5(pp — p) tanh x , (10)
where x = M%Zb, zp being the seafloor depth and L the distance over which the
density changes from p to p,. We adopt L = 7/kg = A/2, close to the value of
L = 2/ky suggested by Jensen. By taking the gradient of Eq. (10), we further
obtain,
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or
equation, we have neglected the curvature of the seafloor, i.e., V2z, ~ 0. We
note that Kadlu assumes a single bottom layer, although it would be straight-
forward to generalize the implementation to handle several layers.

where (V)% = (%)2 = cos?¢ (%)2 + sin’¢ (%—zy’?)z. Moreover, in the second

5 Volume Attenuation

We ignore volume attenuation in the water column, but include volume attenu-
ation in the bottom layer by subtracting a complex term from the sound speed,
cp. The complex term is computed as the largest, real root of the polynomial
Ba? —x + Bc; =0 fulfilling 0 < z < ¢,. Here B = a,())‘)/(407rcb log,y €) with a,(f‘)
being the attenuation coeflicient in units of dB/\. For typical values of az()’\),

this leads to,
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6 Starter

We use the Thomson starter field, as defined in Jensen Sec. 6.4.2.3,
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where (0, k,) = F(0, z), while z5; and 6y are the depth and half-beamwidth

of the source, respectively, and Az is the vertical grid spacing. Note that the
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£ does not appear in the formula given in Jensen Sec. 6.4.2.3.
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